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In this paper, we consider periodically inhomogeneous Markov chains, which can be
regarded as a simple version of physical model—Brownian motors. We introduce for
them the concepts of periodical reversibility, detailed balance, entropy production rate
and circulation distribution. We prove the equivalence of the following statements:
The time-periodic Markov chain is periodically reversible; It is in detailed balance;
Kolmogorov’s cycle condition is satisfied; Its entropy production rate vanishes; Every
circuit and its reversed circuit have the same circulation weight. Hence, in our model
of Markov chains, the directed transport phenomenon of Brownian motors, i.e. the
existence of net circulation, can occur only in nonequilibrium and irreversible systems.
Moreover, we verify the large deviation property and the Gallavotti-Cohen fluctuation
theorem of sample entropy production rates of the Markov chain.

KEY WORDS: Brownian motor, time-periodic Markov chain, periodical reversibility,
detailed balance, entropy production, circulation, fluctuation theorem

1. INTRODUCTION

Noise is unavoidable for any system in thermal contact with its surroundings. In
the last three decades, the creative role of noise attracts much interest of physicists
and biochemists. For example, in the so-called phenomenon of Brownian motors
(or say, ratchet systems),(1,2,4,6,19,22,23,30) a net current of particles can be driven
by noise, providing that there is an appropriate asymmetry in the system, such as
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spatially periodic and asymmetric, so-called ratchet potential. However, in the most
interesting case, such a potential is unbiased, i.e. the time-, space-, and ensemble-
averaged force that it entails is required to vanish, and does not introduce a priori
an obvious bias into one or the other direction of motion. Reimann(30) reviews in
detail the theoretical models and experimental realizations of this phenomenon
of noise-driven mass transport in spatially periodic systems out of thermal
equilibrium.

Another earlier known example is the phenomenon of stochastic resonance,
in which a weak periodic signal in a nonlinear system can be amplified by added
noise. Stochastic resonance was introduced in refs. 3 and 24 to try to explain the
Earth’s ice-age cycle, but it is now recognized to be far more common, occurring for
example in lasers, electronic circuits and sensory neurons. An extensive description
of the phenomenon from the physical point of view can be found in ref. 11. The
notion of stochastic resonance is now used in a much broader sense, and it describes
a wide class of effects that the presence of noise improves some characteristics of
the system.

Although several hundreds of papers on each of these two phenomena were
published (see references in refs. 11 and 30), only few mathematically rigorous
results are known. In many situations, the studied system is subjected to a time-
periodic driving, or the temperature of the thermal noise is subjected to periodic
temporal variations, which results in considering a stochastic differential equation
of the following form,

d Xt = b(t, Xt ) dt + σ (t, Xt ) dWt , (1)

in which Wt is a white noise (Brownian motion), and b(t, x), σ (t, x) are periodic in
the time parameter t . Its time inhomogeneity causes many difficulties in studying
mathematically the property of its solution process.

In this article we consider a discrete variant of (1), a discrete-time Markov
chain with time-periodic transition matrices, which will be called a periodically
inhomogeneous Markov chain. We will discuss its periodical reversibility, de-
tailed balance, entropy production rate, circulation distribution and the relationship
among them. The net circulations of Markov chains and rotation numbers of diffu-
sion processes correspond to the average particle current in Brownian motors,(17,30)

which is the quantity of central interest. Imkeller and Pavlyukevich(15) introduced
a model, which is a special case of ours, to study the phenomenon of stochastic
resonance.

The second law of thermodynamics can be expressed as the entropy increasing
principle: When a closed system evolves from one equilibrium steady state to
another through an adiabatic process, the entropy of this system can not decrease;
if the process is reversible, then its entropy does not change; if not, then its entropy
increases.
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The concept of entropy production was first put forward in nonequilibrium
statistical physics to describe how far a specific state of a system is from its
equilibrium state.(14,25,32) It is closely related to another concept of macroscopic
irreversibility in nonequilibrium statistical physics. A macroscopic irreversible
system in a steady state should have positive entropy production rate and should
be in nonequilibrium.

Since 1980’s, Qian, M.P., Qian, M. and Gong, G.L. (17,26−29) gave a unified
measure-theoretical definition of entropy production rate of a stochastic process as
the specific relative entropy of the distribution of the process with respect to that of
its time reversal. Moreover, they calculated the formulae of entropy production rate
and circulation distribution of homogeneous Markov chains and Q-processes, and
discussed their relationship with reversibility: The chain or process is reversible if
and only if its entropy production vanishes, or iff there are no net circulation.

Recently, Ruelle(31) took hyperbolic dynamical systems as the mathematical
model of nonequilibrium systems, and gave the definition of entropy production
rate of such a system from the perspective of statistical physics. Jiang, etc.(16)

proved that the entropy production rate of Ruelle’s definition can be expressed as
the specific relative entropy of the system with respect to that of its time reversal,
and its entropy production rate is zero iff the system is reversible.

In this article, we extend the notions and results in refs. 17 and 26–29 to
the situation of a periodically inhomogeneous Markov chain, whose definition
and basic properties are given in Sec. 2. Then in Sec. 3 we introduce for it the
notions of periodical reversibility, detailed balance, entropy production rate and
circulation distribution, calculate the expressions of its entropy production rate and
circulation distribution, and discuss the relationship among the notions. To our
happiness, we get the main result of this article that the following statements are
equivalent, which accord excellently with the physical theory: The Markov chain
is periodically reversible; It is in detailed balance; Kolmogorov’s cycle condition is
satisfied; Its entropy production rate vanishes; Every circuit and its reversed circuit
have the same circulation weight. Hence the directed transport phenomenon of
Brownian motors, i.e. the existence of net circulation in our Markov chain model,
can occur only in nonequilibrium and irreversible systems.

In Sec. 4, we consider the large deviation and fluctuation theorem of sample
entropy production rates of periodically inhomogeneous Markov chains. We prove
that not only the sample entropy production rates converge almost surely to the
average entropy production rate, but also their distributions have the large deviation
property, and the large deviation rate function has a symmetry of Gallavotti-Cohen
type, which is the fluctuation theorem of periodically inhomogeneous Markov
chains. The fluctuation theorem was first obtained by Gallavotti and Cohen(10)

for hyperbolic dynamical systems, then extended by Evans and Searles,(8,9) and
extended to stochastic processes by Kurchan,(20) Lebowitz and Spohn,(21) Jiang,
Qian and Zhang,(18) etc.
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Section 5 contains some remarks and examples. It will be noticed that there
is a close relationship between the simplified Brownian motors—periodically in-
homogeneous Markov chains and Parrondo’s paradoxical games.(12,13) This model
involves two games, each of which played on its own results in loss for the player.
But if play alternates periodically or randomly between the two games, the result
is a win.

In Sec. 6, we discuss the relationship between stochastic differential equa-
tions with time-periodic coefficients (including some models of Brownian motors)
and time-periodic Markov chains considered in this paper. We will see that the
rocking ratchet system considered in ref. 30 can be approximated by time-periodic
birth-death chains. Conversely, such a chain can be obtained by discretizing the
Fokker-Planck equation of the ratchet system. Furthermore, if the time-periodic
birth-death chain has periodical reversibility, then the particle current in this dis-
crete model of Brownian motor vanishes. Therefore, for our discrete models,
non-vanishing particle current exists only in systems of periodically irreversible
Markov chains, which correspond to non-equilibrium steady states in statistical
physics.

We believe that most results in this paper can be extended to diffusion pro-
cesses, although there is still a lot to do.

2. DEFINITION AND BASIC PROPERTIES

2.1. Definition

Definition 2.1. Suppose that ξ = {ξn : n = 0, 1, 2, . . .} is an inhomogeneous
Markov chain on a probability space (�,F , P) with denumerable state space
S and transition probability matrix P(m, m + 1) = (pi j (m, m + 1))i, j∈S(we also
write it as Pm = (pm

i j )i, j∈S instead for simplicity), where pi j (m, n) = P(ξn =
j |ξm = i), ∀m ≤ n. If there exists a positive integer T such that

pi j (m, m + 1) = pi j (m + T, m + T + 1), ∀i, j ∈ S, m ∈ Z
+, (2)

then we call ξ a periodically inhomogeneous Markov chain.
Obviously, (2) implies

pi j (m, m + n) = pi j (m + T, m + T + n), ∀i, j ∈ S, m, n ∈ Z
+. (3)

Without loss of generality, we can assume that (�,F , P) is the canonical orbit
space of ξ with � = ∏

Z
+ S.

2.2. Periodically Stationary Distribution

Construct T homogeneous Markov chains as follows: {ηk
n = ξnT +k : n =

0, 1, . . .}, k = 0, 1, . . . , T − 1. Denote their transition probability matrices by
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P̃k = ( p̃k
i j )i, j∈S , where

p̃k
i j = P

(
ηk

n+1 = j |ηk
n = i

) = P
(
ξ(n+1)T +k = j |ξnT +k = i

)
= pi j (nT + k, (n + 1)T + k) = pi j (k, T + k). (4)

Hence,

P̃k = P(k, k + 1)P(k + 1, k + 2) · · · P(T + k − 1, T + k). (5)

Now, we are ready to deduce several simple but useful properties of the periodically
inhomogeneous Markov chain ξ .

Lemma 2.2. If there exists an s ∈ {0, 1, 2, . . . , T − 1} such that {ηs
n} is a ho-

mogenous irreducible positive recurrent Markov chain, then there exists a unique
probability measure π s = (π s

i )i∈S, s.t. π s P̃s = π s .

Definition 2.3. Suppose that there exists a family of probability measures
π = {π k : k = 0, 1, 2, . . . , T − 1} on the state space S satisfying π k P(k, k +
1) = π k+1, k = 0, 1, 2, . . . , T − 2, πT −1 P(T − 1, T ) = π0, and the periodically
inhomogeneous Markov chain ξ = {ξn : n = 0, 1, 2, . . .} takes π0 as its initial
distribution, then for each n = 0, 1, . . ., k = 0, 1, . . . , T − 1, the distribution of
ξnT +k is π k , moreover, the distribution of {ξn : n = 0, 1, 2, . . .} is the same as its
left shift {ξlT +n : n = 0, 1, 2, . . .} (∀l = 0, 1, . . .). In this case we call the chain
ξ periodically stationary, and the family of probability measures π = {π k : k =
0, 1, 2, . . . , T − 1} is said to be its periodically stationary distribution (with πT

understood to be π0).

Proposition 2.4. Under the condition of Lemma 2.2:
(1) Let

π k = π s P(s, s + 1)P(s + 1, s + 2) · · · P(k − 1, k), k = s + 1, . . . , T − 1;

π k = π s P(s, s + 1)P(s + 1, s + 2) · · · P(T + k − 1, T + k),

k = 0, 1, . . . , s − 1, (6)

then for each k ∈ {0, 1, 2, . . . , T − 1}, π k = (π k
i )i∈S satisfies

π k P(k, k + 1) = π k+1,

π k P̃k = π k . (7)

i.e. for each k ∈ {0, 1, 2, . . . , T − 1}, π k is the unique stationary probability mea-
sure of {ηk

n}; Furthermore, if there is not any column in the T matrices P(m, m + 1)
such that all of its elements are zero, then all the elements of π k are positive,
which implies {ηk

n} is a homogenous irreducible positive recurrent Markov chain.
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Meanwhile π = {π k : k = 0, 1, 2, . . . , T − 1} is the unique family of periodically
stationary measures of the periodically inhomogeneous Markov chain ξ .

(2) Conversely, if for each k ∈ {0, 1, 2, . . . , T − 1}, there exists a unique
probability measure π k , such that π k P̃k = π k , then

π k P(k, k + 1) = π k+1, k = 0, 1, 2, . . . , T − 1. (8)

Proof: (a) From Lemma 2.2 and the definition of π k , we have (7). The uniqueness
of the stationary distribution of {ηs

n} guarantees the uniqueness of the stationary
measures of the periodically inhomogeneous Markov chain ξ .

(b) The equality (7) implies

π0 P(0, 1)P(1, 2) · · · P(T − 1, T ) = π0, (9)

π1 P(1, 2)P(2, 3) · · · P(0, 1) = π1. (10)

Multiply the two sides of (9) by P(0, 1), then one sees that π0 P(0, 1) is another
invariant probability measure of P1. By the uniqueness assumption π0 P(0, 1) =
π1. Similarly one can prove (8). �

From later on in this article, we suppose that:
(H) For each k ∈ {0, 1, . . . , T − 1}, {ηk

n : n = 0, 1, 2, . . .} is a homogeneous
irreducible positive recurrent Markov chain.

2.3. Limit Theorems

From the weak limit theorem of transition matrices and the strong law of
large numbers for homogeneous irreducible positive recurrent Markov chains, one
can directly obtain the following results.

Proposition 2.5. (Average Limit)

(1) ∀k = 0, 1, 2, . . . , T − 1, lim
n→∞

1

n

n∑
l=1

pi j (k, k + lT ) = π k
j ,

(2) ∀k = 0, 1, 2, . . . , T − 1, lim
n→∞

1

n

n∑
l=1

pi j (k, k + l) = 1

T

T∑
s=1

π s
j .

Obviously, the limit in (2) is independent of k.
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Proposition 2.6. If f is a bounded function on S, then with probability 1, we
have

lim
n→∞

1

n

n∑
l=0

f (ξl) = 1

T

T −1∑
k=0

∑
i∈S

π k
i f (i). (11)

3. PERIODICAL REVERSIBILITY AND SOME

EQUIVALENT CONDITIONS

3.1. Definition and Detailed Balance Condition

Definition 3.1. If for some k ∈ {0, 1, 2, . . . , T − 1}, the periodically inho-
mogeneous Markov chain ξ satisfies that ∀n ∈ Z

+, (ξk, ξk+1, . . . , ξnT +k) and
(ξnT +k, ξnT +k−1, . . . , ξk) have the same distribution, then we say that the Markov
chain ξ has periodical reversibility of index k.

If the Markov chain ξ satisfies that ∀k = 0, 1, . . . , T − 1, n ∈ Z
+,

(ξk, ξk+1, . . . , ξnT +k) has the same distribution as (ξnT +k, ξnT +k−1, . . . , ξk), then
we say that ξ has complete periodical reversibility.

Therefore, periodically inhomogeneous Markov chain {ξn : n = 0, 1, . . .} has
the complete periodical reversibility if and only if ∀k = 0, 1, . . . , T − 1, {ξn : n =
0, 1, 2, . . .} has the periodical reversibility of index k.

Under the hypothesis (H), if ξ = {ξn : n = 0, 1, 2, . . .} has the periodical
reversibility of index k, then ξ is periodically stationary.

Proposition 3.2. (1) Periodical reversibility of index k of the periodically
stationary Markov chain ξ is equivalent to that (ξk, ξk+1, . . . , ξT +k) and
(ξT +k, ξT +k−1, . . . , ξk) have the same distribution, i.e. ∀i0, i1, i2, . . . , iT ∈ S,

π k
i0

pk
i0i1

pk+1
i1i2

· · · pk+T −1
iT −1iT

= π k
iT

pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

. (12)

This is the detailed balance condition.
(2) Complete periodical reversibility of the periodically stationary Markov

chain ξ is equivalent to that ∀k = 0, 1, . . . , T − 1, (ξk, ξk+1, . . . , ξT +k) and
(ξT +k, ξT +k−1, . . . , ξk) have the same distribution, i.e. ∀k = 0, 1, . . . , T − 1,
∀i0, i1, i2, . . . , iT ∈ S,

π k
i0

pk
i0i1

pk+1
i1i2

· · · pk+T −1
iT −1iT

= π k
iT

pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

. (13)

Proof: We can only prove the sufficiency for the index k = 0, by induction for n.

(1) n = 1, the detailed balance condition says that (ξ0, ξ1, . . . , ξT ) and
(ξT , ξT −1, . . . , ξ1, ξ0) have the same distribution.
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(2) Suppose that (ξ0, ξ1, . . . , ξmT ) has the same distribution as (ξmT ,

ξmT −1, . . . , ξ1, ξ0), then ∀i0, i1, i2, . . . , i(m+1)T ∈ S,

P(ξl = il, 0 ≤ l ≤ (m + 1)T )

= P(ξl = il , 0 ≤ l ≤ mT )

× P(ξl = il, mT + 1 ≤ l ≤ (m + 1)T |ξmT = imT )

= P(ξl = il , 0 ≤ l ≤ mT ) · P(ξl = il, mT ≤ l ≤ (m + 1)T )

/P(ξmT = imT )

= P(ξl = il , 0 ≤ l ≤ mT ) · P(ξl−mT = il , mT ≤ l ≤ (m + 1)T )

/P(ξmT = imT )

= P(ξl = imT −l , 0 ≤ l ≤ mT ) · P(ξl = il+mT , 0 ≤ l ≤ T )/P(ξmT = imT )

= P(ξl = i(m+1)T −l , T ≤ l ≤ (m + 1)T ) · P(ξl = i(m+1)T −l, 0 ≤ l ≤ T )

/P(ξT = imT )

= P(ξl = i(m+1)T −l , T + 1 ≤ l ≤ (m + 1)T |ξT = imT )

× P(ξl = i(m+1)T −l , 0 ≤ l ≤ T )

= P(ξl = i(m+1)T −l , 0 ≤ l ≤ (m + 1)T ). �

3.2. Entropy Production

Definition 3.3. Suppose that µ and ν are two probability measures on a mea-
surable space (M,A). Recall that the relative entropy of µ with respect to ν is
defined as:(33)

H (µ, ν) =
{∫

M log dµ

dν
(x)µ(dx), if µ � ν and log dµ

dν
∈ L1(dµ),

+∞, otherwise.

Definition 3.4. For each fixed k = 0, 1, . . . , T − 1, the entropy production
rate ek

p of index k of the periodically stationary Markov chain ξ = {ξn : n =
0, 1, 2, . . .} is defined as

ek
p = lim

n→∞
1

nT
H
(
P[k,nT +k], P

−
[k,nT +k]

)
, (14)

where P[k,nT +k] is the distribution of (ξk, ξk+1, . . . , ξnT +k), and P
−
[k,nT +k] is the

distribution of (ξnT +k, ξnT +k−1, . . . , ξk+1, ξk). Its complete entropy production
rate ep is defined as ep = 1

T

∑T −1
k=0 ek

p.
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Lemma 3.5.
Suppose that ∀i0, i1, . . . , iT ∈ S, pk

i0i1
pk+1

i1i2
· · · pk+T −1

iT −1iT
> 0 if and only if

pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

> 0, then P[k,nT +k] and P
−
[k,nT +k] are absolutely contin-

uous with respect to each other, and P-almost everywhere, the Radon-Nikodym
derivative is

dP[k,nT +k]

dP
−
[k,nT +k]

(ω) = π k
ξk (ω) pk

ξk (ω)ξk+1(ω) · · · pk−1
ξnT +k−1(ω)ξnT +k (ω)

π k
ξnT +k (ω) pk

ξnT +k (ω)ξnT +k−1(ω) · · · pk−1
ξk+1(ω)ξk (ω)

. (15)

Proposition 3.6. The ek
p in Definition 3.4 can be expressed as

1

2T

∑
i0,i1,...,iT ∈S




[
π k

i0
pk

i0i1
pk+1

i1i2
· · · pk+T −1

iT −1iT

−π k
iT

pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

]
· log

π k
i0

pk
i0 i1

pk+1
i1 i2

···pk+T −1
iT −1 iT

π k
iT

pk
iT iT −1

pk+1
iT −1 iT −2

···pk+T −1
i1 i0




. (16)

Proof: If there exist i0, i1, . . . , iT ∈ S such that only one of pk
i0i1

pk+1
i1i2

· · · pk+T −1
iT −1iT

and pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

is positive, and the other is equal to zero, then
P[k,nT +k] is not absolutely continuous with respect to P

−
[k,nT +k], hence by the

definition of H (P[k,nT +k], P
−
[k,nT +k]), ek

p = +∞; meanwhile, in (16), at least one
term is +∞, and none of the others is negative, so the sum is also equal to +∞.

Now we will prove the desired result under the condition that pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

and pk
iT iT −1

pk+1
iT −1iT −2

· · · pk−1
i1i0

are either positive or equal to 0 simultane-
ously. In this case, by Lemma 3.5, P[k,nT +k] is absolutely continuous with respect
to P

−
[k,nT +k], moreover,

ek
p = lim

n→∞
1

nT
H
(
P[k,nT +k], P

−
[k,nT +k]

)

= lim
n→∞

1

nT

∑
i0,i1,...,inT ∈S




π k
i0

pk
i0i1

pk+1
i1i2

· · · pk+nT −1
inT −1inT

· log
π k

i0
pk

i0 i1
pk+1

i1 i2
···pk+nT −1

inT −1 inT

π k
inT

pk
inT inT −1

pk+1
inT −1 inT −2

···pk+nT −1
i1 i0




= lim
n→∞

1

nT
· n

∑
i0,i1,...,iT ∈S




π k
i0

pk
i0i1

pk+1
i1i2

· · · pk+T −1
iT −1iT

· log
π k

i0
pk

i0 i1
pk+1

i1 i2
···pk+T −1

iT −1 iT

π k
iT

pk
iT iT −1

pk+1
iT −1 iT −2

···pk+T −1
i1 i0



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= 1

T

∑
i0,i1,...,iT ∈S




π k
i0

pk
i0i1

pk+1
i1i2

· · · pk+T −1
iT −1iT

· log
π k

i0
pk

i0 i1
pk+1

i1 i2
···pk+T −1

iT −1 iT

π k
iT

pk
iT iT −1

pk+1
iT −1 iT −2

···pk+T −1
i1 i0




= 1

2T

∑
i0,i1,...,iT ∈S




[
π k

i0
pk

i0i1
pk+1

i1i2
· · · pk+T −1

iT −1iT

−π k
iT

pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

]
· log

π k
i0

pk
i0 i1

pk+1
i1 i2

···pk+T −1
iT −1 iT

π k
iT

pk
iT iT −1

pk+1
iT −1 iT −2

···pk+T −1
i1 i0




. �

Proposition 3.6 immediately implies that ek
p is nonnegative, furthermore,

ek
p = 0 is equivalent to ∀i0, i1, . . . , iT ∈ S,

π k
i0

pk
i0i1

pk+1
i1i2

· · · pk+T −1
iT −1iT

= π k
iT

pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

. (17)

Hence, by Proposition 3.2, we get

Proposition 3.7. (1) Periodical reversibility of index k of the periodically sta-
tionary Markov chain ξ is equivalent to ek

p = 0.
(2) Complete periodical reversibility of the periodically stationary Markov

chain ξ is equivalent to ep = 0, i.e. ∀k ∈ {0, 1, 2, . . . , T − 1}, ek
p = 0.

3.3. Kolmogorov’s Cycle Condition

Definition 3.8. We can associate an integer k = n mod T to a state i which
appears at time n in a trajectory of the periodically inhomogeneous Markov chain
ξ . It is called the index of state i at this time.

Remark 3.9. (1) For simplicity, we can also use n as its index at time n. (2) If
the element pk

i j of the transition matrix P(k, k + 1) is positive, then we say that
state j can be arrived from the state i by one step for index k, and we write i

k→ j
for simplicity.

Definition 3.10. A simple circuit of length nT (∀n ∈ N) in S, i0
k→ i1

k+1→
· · · k+nT −2→ inT −1

k+nT −1→ i0 is called a periodical circuit of the periodically inho-
mogeneous Markov chain ξ . It is written as

C = (i0, i1, . . . , inT −1; k)
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(the index of i0 is k). In this article, all of its cyclic permutation (i1, i2, . . . ,

inT −1, i0; k + 1), etc. are understood to be the same periodical circuit.

Definition 3.11. The reversed circuit of a periodical circuit C = (i0, i1, . . . ,

inT −1; k) with respect to an index l (l = 0, 1, . . . , T − 1), which is simply called
the reversed circuit for index l, is defined as

Cl = (i0, inT −1, . . . , i2, i1; 2l − k).

Remark 3.12. (1) A periodical circuit has several equivalent expressions.
(2) It is not allowed that two same states in a periodical circuit have the same

index.
(3) The reversed circuits for index l defined via different expressions of C are

the same, and (Cl )l = C. So the definition above is reasonable.

(4) A path of length nT (no matter whether it is a circuit ) i0
k→ i1

k+1→ · · · k−1→
inT can be written as [i0, i1, . . . , inT ; k], which is called a path with index k.

Proposition 3.13. The periodically stationary Markov chain ξ has periodical
reversibility of index k if and only if the condition below is satisfied: for each
periodical circuit C = (i0, i1, . . . , inT −1; k),

pk
i0i1

pk+1
i1i2

· · · pk+nT −1
inT −1i0

= pk
i0inT −1

pk+1
inT −1inT −2

· · · pk+nT −1
i1i0

. (18)

Now, fix an arbitrary state i0 ∈ S. For each i �= i0, there exists a path of length nT

with index k from i0 to i , i0
k→ i1

k+1→ · · · k+nT −2→ inT −1
k+nT −1→ inT = i . Define

υk
i =

nT −1∏
m=0

pk+m
im im+1

pk+nT −m−1
im+1im

,

then 0 < υk
i < ∞, and π k = {π k

i , i ∈ S} in the periodically stationary measures
π of ξ can be expressed as

π k
i =

{
α−1υk

i , i �= i0,

1/a, i = i0,

where α = 1 + ∑
i �=i0

υk
i .

One can imitate the proof of Kolmogorov’s cycle condition for homogeneous
irreducible Markov chains(7) to show that the values of υk

i ’s are independent of the
choice of the paths and that they constitute a periodically stationary measure of ξ .

Corollary 3.14. The periodically stationary Markov chain ξ has complete peri-
odical reversibility if and only if the condition below is satisfied:
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∀k = 0, 1, 2, . . . , T − 1, for each periodical circuit C = (i0, i1, . . . , inT −1; k),

pk
i0i1

pk+1
i1i2

· · · pk+nT −1
inT −1i0

= pk
i0inT −1

pk+1
inT −1inT −2

· · · pk+nT −1
i1i0

. (19)

Now for each k = 0, 1, 2, . . . , T − 1, fix an arbitrary state i0 ∈ S. For each i �= i0,

there exists a path of length nT with index k from i0 to i , i0
k→ i1

k+1→ · · · k−2→
inT −1

k−1→ inT = i . Define

υk
i =

nT −1∏
m=0

pk+m
imim+1

pk+nT −m−1
im+1im

,

then 0 < υk
i < ∞, and π k = (π k

i )i∈S in the periodically stationary measures π of
ξ can be expressed as

π k
i =

{
α−1υk

i , i �= i0

1/α, i = i0

where α = 1 + ∑
i �=i0

υk
i .

3.4. Circulation Distribution

From later on in this article, for simplicity, we suppose that the state space S
is finite for in Sec. 6.

Construct a Markov chain η = {ηn : n = 0, 1, . . .}, ηn = (ξn, n mod T ),
with state space X = S × {0, 1, 2, . . . , T − 1}. Sort the N elements of S as
(s1, s2, . . . , sN ), then we can sort the elements of X as

((s1, 0), (s2, 0), . . . , (sN , 0), (s1, 1), (s2, 1), . . . , (sN , 1), . . . ,

(s1, T − 1), (s2, T − 1) · · · , (sN , T − 1)).

The transition probability matrix of η from step n to step n + 1 is

P̃(n, n + 1)=




0 P(0, 1) 0 · · · 0
0 0 P(1, 2) 0 0
...

...
. . .

. . .
...

0 0 · · · · · · P(T − 2, T − 1)
P(T − 1, T ) 0 · · · · · · 0


 ,

(20)
which does not depend on n, so {ηn : n = 0, 1, 2, . . .} is a homogeneous Markov
chain. Write P̃(n, n + 1) as P̃ . Let π̃ = 1

T (π0, π1, . . . , πT −1) = 1
T (π(i,k), i ∈

S, k = 0, 1, 2, . . . , T − 1), then by (8), π̃ P̃ = π̃ , so π̃ is the unique stationary
measure of η. Therefore, η is a homogeneous irreducible positive recurrent Markov
chain. Each circuit (i0, k) → (i1, k + 1) → · · · → (inT −1, k − 1) → (i0, k) (writ-
ten as C̃) of η in its state space X = S × {0, 1, 2, . . . , T − 1} corresponds to
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the periodical circuit C = (i0, i1, . . . , inT −1; k) of the periodically inhomogeneous
Markov chain ξ . We will derive the periodical circuit distribution of the periodically
inhomogeneous Markov chain ξ from the circuit distribution of the homogeneous
Markov chain η. Use Theorem 1.3.3 in ref. 17, then one can directly get

Proposition 3.15. Let C̃n(ω) be the class of all circuits occurring along the
sample path {ηl(ω) : l = 0, 1, 2, . . .} until time n, and λ̃C̃,n(ω) be the number
of occurrences of a circuit C̃ up to time n along the sample path {ηl(ω) : l =
0, 1, 2, . . .}, then the sequence (C̃n(ω), λ̃C̃,n(ω)/n) converges almost surely to a
class (C̃∞, λ̃C̃ ). Furthermore, for any directed circuit C̃ = (i0, k) → (i1, k + 1) →
· · · → (inT −1, k − 1) → (i0, k) ∈ C̃∞, we have

λ̃C̃ = p̃(i0,k)(i1,k+1) p̃(i1,k+1)(i2,k+2) · · · p̃(inT −1,k−1)(i0,k)

· D̃({(i0, k), (i1, k + 1), (i2, k + 2), . . . , (inT −1, k − 1)}c)∑
( j,l)∈X D̃({( j, l)}c)

, (21)

where for a subset S̃ of the state space X , D̃(S̃) is the determinant of D̃ = I − P̃
with rows and columns indexed in the index set S̃. D̃(∅) is understood as 1.

We refer the reader to Chap. 1, Sect. 2 of ref. 17 for the rigorous definition
of λ̃C̃,n(ω) using the so-called derived chain.

The following is a direct result from the elementary algebra knowledge of
determinants.

Lemma 3.16. If a matrix A can be written as the block matrix below:

A =




I −A0 0 · · · · · · 0
0 I −A1 0 · · · 0
...

. . . · · · · · · · · · ...

0
...

... · · · · · · 0

0
. . .

. . . 0 I −Am−2

−Am−1 0 · · · · · · 0 I




,

where I , A0, A1, . . . , Am−1 are all square matrices of order M, then the determi-
nants

|A| = |I − A0 A1 A2 · · · Am−1|.

Given two subsets S1, S2 of S, we use Pk+1
k (S1, S2) to denote the matrix

which is obtained by deleting the rows with indices in S1 and columns with
indices in S2 from Pk . Let Cn(ω) be the class of all periodical circuits occurring
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along the sample path {ξn(ω) : n = 0, 1, 2, . . .} until time n, and let λC,n(ω) be the
number of occurrences of a periodical circuit C up to the time n along the sample
path {ξn(ω) : n = 0, 1, 2, . . .}. Since λ̃C̃,n(ω) = λC,n(ω), by Proposition 3.15 and
Lemma 3.16, we can get

Corollary 3.17. The sequence (Cn(ω), λC,n(ω)/n) converges almost surely
to a class (C∞, λC ). Furthermore, for any directed periodical circuit C =
(i0, i1, . . . , inT −1; k), the circulation weight

λC = pk
i0i1

pk+1
i1i2

· · · pk+nT −1
inT −1i0

× D̃({(i0, k), (i1, k + 1), (i2, k + 2) · · · , (inT −1, k − 1)}c)∑
( j,l)∈X D̃({( j, l)}c)

= pk
i0i1

pk+1
i1i2

· · · pk+nT −1
inT −1i0

×|I − P1
0 (Sr , Sr+1)P2

1 (Sr+1, Sr+2) · · · PT
T −1(Sr−1, Sr )|∑T −1

l=0

∑
j∈S D̃({( j, l)}c)

, (22)

where r = T − k, and Sl = {il, iT +l , . . . , i(n−1)T +l}. The circulation weights {λC :
C ∈ C∞} is called the circulation distribution of ξ .

Obviously, λC = λ̃C̃ . Apply a similar argument as the proof of Theorem 1.3.5
in ref. 17 to the homogeneous Markov chain η, then one can get

Proposition 3.18. For the homogeneous irreducible positive recurrent
Markov chain η = {ηl : l = 0, 1, 2, . . .}, we have the following probabilistic cycle
representation: ∀i0, i1, . . . , iT ∈ S, k = 0, 1, . . . , T − 1,

π(i0,k)

T
p̃(i0,k)(i1,k+1) p̃(i1,k+1)(i2,k+2) · · · p̃(iT −1,k−1)(iT ,k)

=
∑

C̃∈C̃∞

λ̃C̃ JC̃ ((i0, k), (i1, k + 1), . . . , (iT −1, k − 1), (iT , k)),

where JC̃ ((i0, k), (i1, k + 1), . . . , (iT −1, k − 1), (iT , k)) is defined to be 1 if C̃ in-
cludes the path (i0, k) → (i1, k + 1) → · · · → (iT , k), otherwise 0.

Since π(i,k) = π k
i , λ̃C̃ = λC , by the relationship between P̃ and P(0, 1),

· · · , P(T − 1, T ), we can get the corresponding probabilistic cycle representation
of periodically inhomogeneous Markov chains:
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Corollary 3.19. For the periodically inhomogeneous Markov chain ξ = {ξn :
n = 0, 1, 2, . . .}, we have

π k
i0

T
pk

i0i1
pk+1

i1i2
· · · pk−1

iT −1iT
=

∑
C∈C∞

λC JC ([i0, i1, . . . , iT −1, iT ; k]),

∀i0, i1, . . . , iT ∈ S, k = 0, 1, . . . , T − 1, (23)

where JC ([i0, i1, . . . , iT −1, iT ; k]) is defined to be 1 if C includes the path i0
k→

i1
k+1→ · · · k+T −1→ iT , otherwise 0.

Corollary 3.20. We have the following circulation decomposition of the period-
ically inhomogeneous Markov chain ξ = {ξn : n = 0, 1, 2, . . .}:

π k
i0

pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

− π k
iT

pk
iT iT −1

· · · pk−1
i1i0

= T
∑

C∈C∞

λC JC ([i0, i1, . . . , iT −1, iT ; k])

− T
∑

Ck ∈C∞

λCk JCk ([iT , iT −1, . . . , i1, i0; k])

= T
∑

C∈C∞

(λC − λCk )JC ([i0, i1, . . . , iT −1, iT ; k]). (24)

The corollary says that any one of the T -step probability fluxes π k
i0

pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

can be decomposed into two parts: one is the part of the detailed balance

min
{
π k

i0
pk

i0i1
pk+1

i1i2
· · · pk−1

iT −1iT
, π k

iT
pk

iT iT −1
· · · pk−1

i1i0

}
,

i.e. the eliminated part of the two T -step probability fluxes; another is the part
of the circulation balance, i.e. the net part of the probability flux along the path

i0
k→ i1

k+1→ · · · k+T −1→ iT , which is composed of a set of circulations on C∞ that
pass the path or its reversal.

Lemma 3.21. If A and B are both square matrices of order M, then |I − AB| =
|I − B A|.

Theorem 3.22. The periodically stationary Markov chain ξ has the period-
ical reversibility of index k if and only if for each periodical circuit C =
(i0, i1, . . . , inT −1; k) ∈ C∞, the circulation weights λC of C and λCk of its re-
versed circuit Ck = (i0, inT −1, . . . , i1; k) are equal to each other.
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Proof: Necessity: At first, we prove the necessity for k = 0. By Proposition 3.13
and Corollary 3.17, we only need to prove∣∣I − P1

0 (S0, S1)P2
1 (S1, S2) · · · PT

T −1(ST −1, S0)
∣∣

= ∣∣I − P1
0 (S0, ST −1)P2

1 (ST −1, ST −2) · · · PT
T −1(S1, S0)

∣∣.
Write � = diag(π0

i )i �∈S0 , then �−1 = diag( 1
π0

j
) j �∈S0 . From

π0
i · [P1

0 (S0, S1)P2
1 (S1, S2) · · · PT

T −1(ST −1, S0)
]

i j
· 1

π0
j

= ∑
kl /∈Sl ,l=1,2···,T −1

i, j /∈S0

π0
i · p0

ik1
p1

k1k2
· · · pT −1

kT −1 j · 1
π0

j

= ∑
kl /∈Sl ,l=1,2···,T −1

i, j /∈S0

p0
jkT −1

p1
kT −1kT −2

· · · pT −1
k1i

= [
P1

0 (S0, ST −1)P2
1 (ST −1, ST −2) · · · PT

T −1(S1, S0)
]

j i

follows that

�P1
0 (S0, S1)P2

1 (S1, S2) · · · PT
T −1(ST −1, S0)�−1

= [
P1

0 (S0, ST −1)P2
1 (ST −1, ST −2) · · · PT

T −1(S1, S0)
]′

.

So, we immediately get∣∣I − P1
0 (S0, S1)P2

1 (S1, S2) · · · PT
T −1(ST −1, S0)

∣∣
= ∣∣�(I − P1

0 (S0, S1)P2
1 (S1, S2) · · · PT

T −1(ST −1, S0))�−1
∣∣

= ∣∣I − �P1
0 (S0, S1)P2

1 (S1, S2) · · · PT
T −1(ST −1, S0)�−1

∣∣
= ∣∣I − P1

0 (S0, ST −1)P2
1 (ST −1, ST −2) · · · PT

T −1(S1, S0)
∣∣.

For the case k > 0, use Lemma 3.21, and imitate the proof for the case k = 0. The
sufficiency follows obviously from Proposition 3.2 and Corollary 3.20. �

Corollary 3.23. The periodically stationary Markov chain {ξn : n ≥ 0} has the
complete periodical reversibility if and only if ∀k = 0, 1, . . . , T − 1 and for each
periodical circuit C = (i0, i1, . . . , inT −1; k) ∈ C∞, the circulation weight λC of
C and the circulation weight λCk of its reversed circuit with index k, Ck =
(i0, inT −1, . . . , i1; k) satisfy the equation λC = λCk .

4. LARGE DEVIATION OF SAMPLE ENTROPY PRODUCTION

AND FLUCTUATION THEOREM

In this section, fix an arbitrary k ∈ {0, 1, . . . , T − 1}.
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4.1. Large Deviation

Define a new Markov chain {ψk
n = (ξnT +k, ξnT +k+1, . . . , ξ(n+1)T +k) : n =

0, 1, 2, . . .} from the periodically stationary Markov chain ξ = {ξn : n =
0, 1, 2, . . .}. The state space of {ψk

n } can be taken as 
 = {(i0, i1, . . . , iT ) ∈ ST +1 :
pk

i0i1
pk+1

i1i2
· · · pk−1

iT −1iT
> 0}.

Proposition 4.1. {ψk
n : n = 0, 1, 2, . . .} is a homogeneous irreducible Markov

chain with stationary distribution

µ(i0, i1, . . . , iT ) = π k
i0

pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

> 0.

Obviously, {ψk
n : n = 0, 1, 2, . . .} is also positive recurrent.

Proof: By the time periodicity of the transition matrix of ξ and our basic hypoth-
esis (H), we get that {ψk

n : n = 0, 1, 2, . . .} is a homogeneous irreducible Markov
chain with transition probability P(i0,i1,...,iT )( j0, j1,..., jT ) = δiT j0 pk

j0 j1
pk+1

j1 j2
· · · pk−1

jT −1 jT
.

Since π is the periodically stationary distribution of {ξn : n = 0, 1, 2 . . .},∑
( j0, j1,..., jT )∈


µ( j0, j1, . . . , jT )P( j0, j1,..., jT )(i0,i1,...,iT )

=
∑

( j0, j1,..., jT )∈


π k
j0 pk

j0 j1 pk+1
j1 j2

· · · pk−1
jT −1 jT

· δ jT i0 pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

=
∑

( j0, j1,..., jT −1)

π k
j0 pk

j0 j1 pk+1
j1 j2

· · · pk−1
jT −1i0

· pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

=
∑

( j1,..., jT −1)

π k+1
j1

pk+1
j1 j2

· · · pk−1
jT −1i0

· pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

=
∑

( j2,..., jT −1)

π k+2
j2

pk+2
j2 j3

· · · pk−1
jT −1i0

pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

=
∑
jT −1

π k−1
jT −1

pk−1
jT −1i0

pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

= π k
i0

pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

= µ(i0, i1, . . . , iT ).

So, µ(i0, i1, . . . , iT ) = π k
i0

pk
i0i1

pk+1
i1i2

· · · pk−1
iT −1iT

> 0 is the unique stationary
distribution of {ψk

n }. �

In the discussion below we will assume that the state space S is finite and
the following condition is satisfied: pk

i0i1
· · · pk−1

iT −1iT
and pk

iT iT −1
· · · pk−1

i1i0
are either
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positive or equal to zero at the same time. Then, by Lemma 3.5,

dP[k,nT +k]

dP
−
[k,nT +k]

(ω) = π k
ξk (ω) pk

ξk (ω)ξk+1(ω) · · · pk−1
ξnT +k−1(ω)ξnT +k (ω)

π k
ξnT +k (ω) pk

ξnT +k (ω)ξnT +k−1(ω) · · · pk−1
ξk+1(ω)ξk (ω)

.

Let W k
n (ω) = log dP[k,nT +k]

dP
−
[k,nT +k]

(ω).

Proposition 4.2. Almost surely, one has

lim
n→∞

W k
n (ω)

nT
= ek

p. (25)

Proof: Define a real function on the state space 
,

f (i0, i1, . . . , iT ) = 1

T
log

π k
i0

pk
i0i1

· · · pk−1
iT −1iT

π k
iT

pk
iT iT −1

· · · pk−1
i1i0

.

Apply the strong law of large numbers for homogeneous irreducible Markov chains
to {ψk

n : n = 0, 1, 2, . . .}, then we can get that almost surely

lim
n→∞

W k
n

nT

= lim
n→∞

1

nT
log

π k
ξk

pk
ξkξk+1

· · · pk−1
ξnT +k−1ξnT +k

π k
ξnT +k

pk
ξnT +kξnT +k−1

· · · pk−1
ξk+1ξk

= lim
n→∞

1

n

n−1∑
l=0

1

T
log

π k
ξlT +k

pk
ξlT +kξlT +k+1

· · · pk−1
ξ(l+1)T +k−1ξ(l+1)T +k

π k
ξ(l+1)T +k

pk
ξ(l+1)T +kξ(l+1)T +k−1

· · · pk−1
ξlT +k+1ξlT +k

= lim
n→∞

1

n

n−1∑
l=0

f
(
ψk

l

)

=
∑

(i0,i1,...,iT )∈


µ(i0, i1, . . . , iT ) f (i0, i1, . . . , iT )

= 1

T

∑
i0,i1,...,iT ∈S

π k
i0

pk
i0i1

· · · pk−1
iT −1iT

log
π k

i0
pk

i0i1
· · · pk−1

iT −1iT

π k
iT

pk
iT iT −1

· · · pk−1
i1i0

= ek
p. �

Let ck
n(λ) = 1

n log EeλW k
n .
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Proposition 4.3. There exists a real differentiable function ck(λ) such that

lim
n→∞ ck

n(λ) = ck(λ). So the family of the distributions of { W k
n (ω)
n : n ∈ N} has a

large deviation property with rate function I k(z) = sup
λ∈R

{λz − ck(λ)}.

Proof:

EeλW k
n

= E

(
dP[k,nT +k]

dP
−
[k,nT +k]

(ω)

)λ

= E

(
π k

ξk (ω) pk
ξk (ω)ξk+1(ω) · · · pk−1

ξnT −1+k (ω)ξnT +k (ω)

π k
ξnT +k (ω) pk

ξnT +k (ω)ξnT +k−1(ω) · · · pk−1
ξk+1(ω)ξk (ω)

)λ

=
∑

i0 ,i1 ,...,inT ∈S:

pk
i0 i1

···pk−1
inT −1 inT

>0

[
π k

i0
pk

i0i1
· · · pk−1

inT −1inT

(
π k

i0
pk

i0 i1
···pk−1

inT −1 inT

π k
inT

pk
inT inT −1

···pk−1
i1 i0

)λ
]

=
∑

i0 ,i1 ,...,inT ∈S:

pk
i0 i1

···pk−1
inT −1 inT

>0




π k
i0

pk
i0i1

· · · pk−1
iT −1iT

(
π k

i0
pk

i0 i1
···pk−1

iT −1 iT

π k
iT

pk
iT iT −1

···pk−1
i1 i0

)λ

· · · pk
i(n−1)T i(n−1)T +1

· · · pk−1
inT −1inT(

π k
i(n−1)T

pk
i(n−1)T i(n−1)T +1

···pk−1
inT −1 inT

π k
inT

pk
inT inT −1

···pk−1
i(n−1)T +1 i(n−1)T

)λ


. (26)

Let

ai j (λ) =
∑

i1 ,i2 ,...,iT −1∈S:

pk
ii1

···pk−1
iT −1 j >0


pk

ii1
pk+1

i1i2
· · · pk−1

iT −1 j

(
π k

i pk
ii1

· · · pk−1
iT −1 j

π k
j pk

jiT −1
· · · pk−1

i1i

)λ

 ,

Obviously,

ai j (λ) > 0 ⇔ ∃i1, i2, . . . , iT −1 ∈ S, s.t. pk
ii1

· · · pk−1
iT −1 j > 0

⇔ p̃k
i j > 0.

So A(λ) = (ai j (λ))i, j∈S is an irreducible nonnegative matrix. By the Perron-
Frobenius theorem, its spectral radius e(λ) is a positive eigenvalue of A(λ) with
one-dimensional eigenspace, whose correspondent eigenvector is supposed to be
α = (α1, . . . , αN )T , αi > 0,∀i ∈ S. Write M = max

i
(αi ), m = min

i
(αi ), then, by

(26), for any fixed λ, we have

M−1π k A(λ)nα ≤ EeλW k
n = π k A(λ)n1 ≤ m−1π k A(λ)nα,
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in which 1 = (1, . . . , 1)T . Hence,

lim
n→∞ ck

n(λ) = lim
n→∞

1

n
log EeλW k

n = lim
n→∞

1

n
log π k A(λ)nα = e(λ)

�= ck(λ).

Then, by Remark 1.5.6 in ref. 17, we come to the conclusion that e(λ) is differ-
entiable, and the large deviation property follows from the Gärtner-Ellis Theorem
(see Theorem 1.5.2 in ref. 17). �

4.2. Fluctuation Theorem

Theorem 4.4. (Fluctuation Theorem) The free energy function ck(λ) and the
large deviation rate function I k(z) have the following properties:

ck(λ) = ck(−(1 + λ)), I k(z) = I k(−z) − z. (27)

Proof: One only needs to prove that ck
n(λ) = ck

n(−(1 + λ)).

EeλW k
n

=
∑

i0 ,i1 ,···,inT ∈S:

pk
i0 i1

···pk−1
inT −1 inT

>0

[
π k

i0
pk

i0i1
· · · pk−1

inT −1inT

(
π k

i0
pk

i0 i1
···pk−1

inT −1 inT

π k
inT

pk
inT inT −1

···pk−1
i1 i0

)λ
]

=
∑

i0 ,i1 ,···,inT ∈S:

pk
i0 i1

···pk−1
inT −1 inT

>0




π k
inT

pk
inT inT −1

· · · pk−1
i1i0(

π k
inT

pk
inT inT −1

···pk−1
i1 i0

π k
i0

pk
i0 i1

···pk−1
inT −1 inT

)λ




=
∑

i0 ,i1 ,···,inT ∈S:

pk
i0 i1

···pk−1
inT −1 inT

>0




π k
i0

pk
i0i1

· · · pk−1
inT −1inT(

π k
i0

pk
i0 i1

···pk−1
inT −1 inT

π k
inT

pk
inT inT −1

···pk−1
i1 i0

)−1−λ




= Ee(−1−λ)W k
n .

Hence

I k(z) = sup
λ∈R

{λz − ck(λ)} = sup
λ∈R

{(−1 − λ)z − ck(−1 − λ)}

= sup
λ∈R

{λ(−z) − ck(λ)} − z = I k(−z) − z. �
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Corollary 4.5. It holds that

P

(
W k

n

n
= z

)
= enz

P

(
W k

n

n
= −z

)
. (28)

Proof:

P

(
W k

n

n
= z

)

= P[k,nT +k]

(
dP[k,nT +k]

dP
−
[k,nT +k]

(ω) = enz

)

=
∑

im ∈S, m=0,1,2,...,nT :

πk
i0

pk
i0 i1

···pk−1
inT −1 inT

πk
inT

pk
inT inT −1

···pk−1
i1 i0

= enz

π k
i0

pk
i0i1

· · · pk−1
inT −1inT

=
∑

im ∈S, m=0,1,2,...,nT :

πk
i0

pk
i0 i1

···pk−1
inT −1 inT

πk
inT

pk
inT inT −1

···pk−1
i1 i0

= enz

enzπ k
inT

pk
inT inT −1

· · · pk−1
i1i0

=
∑

im ∈S, m=0,1,2,...,nT :

πk
inT

pk
inT inT −1

···pk−1
i1 i0

πk
i0

pk
i0 i1

···pk−1
inT −1 inT

= enz

enzπ k
i0

pk
i0i1

· · · pk−1
inT −1inT

= enz
P[k,nT +k]

(
dP

−
[k,nT +k]

dP[k,nT +k]
(ω) = enz

)

= enz
P

(
W k

n

n
= −z

)
. �

Remark 4.6. Roughly speaking, the fluctuation theorem gives a formula for the

probability ratio that the sample entropy production rate W k
n

n takes a value z to that
of −z, and the ratio is roughly enz. Under the condition of periodical irreversibility

for index k, for z > 0 in a certain range, the sample entropy production rate W k
n

n
has a positive probability to take the value z as well as the value −z, but the
fluctuation theorem tells that the former probability is greater, which accords with
the second law of thermodynamics.
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5. SEVERAL REMARKS OF PERIODICAL REVERSIBILITY

5.1. Remark 1

Even if ∀k ∈ {0, 1, 2, . . . , T − 1}, {ηk
n : n = 0, 1, 2, . . .} is a reversible

Markov chain, and all the P(m, m + 1) have reversible distributions when re-
garded as the transition probability matrix of a homogeneous Markov chain,
{ξn : n = 0, 1, 2, . . .} may still be periodically irreversible. This fact of periodically
inhomogeneous Markov chain is similar to Parrondo’s paradoxical games.(12,13)

We expect that the results obtained in this article can be applied to provide a new
rigorous mathematical analysis of the paradox.

For fixed m, P(m, m + 1) having a reversible distribution corresponds to that
in (1), for fixed t , (σ (t, x)σ T (t, x))−1b(t, x) has a potential.(17)

Example 5.1 Let T = 3,

P(0, 1) = P(1, 2) =




0 1
2

1
2

1
2 0 1

2

1
2

1
2 0


 , P(2, 3) =




0 5
12

7
12

1
3

1
12

7
12

1
3

5
12

1
4


 .

P̃0 = P(0, 1)P(1, 2)P(2, 3) =




1
6

1
3

1
2

1
4

1
4

1
2

1
4

1
3

5
12




has a reversible distribution ( 3
13 , 4

13 , 6
13 ),

P̃1 = P(1, 2)P(2, 3)P(0, 1) =




1
3

3
8

7
24

5
12

7
24

7
24

5
12

3
8

5
24




has a reversible distribution ( 5
13 , 9

26 , 7
26 ), and

P̃2 = P(2, 3)P(0, 1)P(1, 2) =




1
4

17
48

19
48

1
3

13
48

19
48

1
3

17
48

5
16




has a reversible distribution ( 4
13 , 17

52 , 19
52 ). But the periodically stationary Markov

chain determined by P(0, 1), P(1, 2), P(2, 3) is not periodically reversible. For
instance, consider the path 1 → 2 → 3 → 2:
index 0: 3

13 × 1
2 × 1

2 × 5
12 �= 4

13 × 1
2 × 1

2 × 1
3 ,

index 1: 5
13 × 1

2 × 7
12 × 1

2 �= 9
26 × 1

2 × 5
12 × 1

2 ,
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index 2: 4
13 × 5

12 × 1
2 × 1

2 �= 17
52 × 7

12 × 1
2 × 1

2 .

5.2. Remark 2

There exists completely periodically reversible Markov chains.

Example 5.2 Let T = 2,

P(0, 1) =




0 1
3

2
3

1
3 0 2

3
1
2

1
2 0


 , P(1, 2) =




0 1
2

1
2

1
2 0 1

2
1
2

1
2 0


 .

They determine a completely periodically reversible inhomogeneous Markov
chain.

5.3. Remark 3

Periodical reversibility for different indices are not equivalent.

Example 5.3 Let T = 3,

P(0, 1) = P(1, 2) =
(

1
2

1
2

1
2

1
2

)
, P(2, 3) =

(
1
3

2
3

1
3

2
3

)
.

When the initial distribution is π = ( 1
2 , 1

2 ), the Markov chain is periodically re-
versible for index 0, but periodically irreversible for index 1. Consider the path

for index 1: 1
1→ 1

2→ 2
0→ 1 and its reversal 1

1→ 2
2→ 1

0→ 1,

1

2
× 1

2
× 2

3
× 1

2
�= 1

2
× 1

2
× 1

3
× 1

2
.

6. RELATIONSHIP BETWEEN BROWNIAN MOTORS

AND TIME-PERIODIC MARKOV CHAINS

6.1. Discrete Model of Rocking Ratchet

In Chapter 5 of ref. 30, Reimann proposed the rocking ratchet model of
Brownian motor with periodic driving, i.e. the one-dimensional overdamped
stochastic system

ηẋ(t) = −V ′(x(t)) + y(t) + ξ (t),

where ξ (t) is the white noise, η is the viscous friction coefficient, V ′(x) = ∂V (x)
∂x ,

and y(t) is assumed to be a periodic function of time t with some period J , i.e.
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y(t + J ) = y(t), ∀t . Moreover, the potential V is always assumed to be spatially
periodic with certain period L , i.e. V (x + L) = V (x) for all x .

To make our discussion more general, we study the master equation of
Brownian motors in (1):

d Xt = b(t, Xt ) dt + σ (t, Xt ) dWt ,

in which Wt is a Brownian motion, and b(t, x), σ (t, x) are periodic in both the
time parameter t and the spatial parameter x .

For (1), we have the Kolmogorov’s forward equation, also called the Fokker-
Planck equation for the probability density ρ(t, y) of Xt :

{
∂ρ(t,y)

∂t = 1
2

∂2

∂ y2 (σ (t, y)2ρ(t, y)) − ∂
∂y (b(t, y)ρ(t, y))

ρ(0, y) = δxy
(29)

for some initial fixed point x .
Let ∂

∂y and ∂2

∂ y2 be replaced respectively by the finite difference operator δ and

δ2 on S = {0,±�,±2�, . . .} with space step � > 0, and let ∂
∂t be replaced by

the finite difference operator τ on � = {0, ε, 2ε, . . .} with time step ε = �2

c > 0,
where c is specified in Remark 6.3 below:

δ f (i�) = f ((i + 1)�) − f ((i − 1)�)

2�
,

δ2 f (i�) = f ((i + 1)�) + f ((i − 1)�) − 2 f (i�)

�2
,

τ f (nε) = f ((n + 1)ε) − f (nε)

ε
.

Then we can get the difference equation, which is just the discretized version of
the Fokker-Planck equation from the point view of numerical analysis:

τρ(�)(nε, i�) = −δ
[
b(nε, i�)ρ(�)(nε, i�)

] + 1

2
δ2
[
σ 2(nε, i�)ρ(�)(nε, i�)

]
,

(30)
i.e.

ρ(�)((n + 1)ε, i�) − ρ(�)(nε, i�)

ε

= b(nε, (i − 1)�)ρ(�)(nε, (i − 1)�) − b(nε, (i + 1)�)ρ(�)(nε, (i + 1)�)

2�

+ 1

2�2

[
σ 2(nε, (i + 1)�)ρ(�)(nε, (i + 1)�) − 2σ 2(nε, i�)ρ(�)(nε, i�)

+ σ 2(nε, (i − 1)�)ρ(�)(nε, (i − 1)�)
]
. (31)
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Following the next two theorems, one can see that (31) is also the master equa-
tion of a time-periodic Markov chain {Y (�)

n : n = 0, 1, 2, . . .}, which converges in
distribution to the inhomogeneous diffusion {Xt : t ≥ 0} in (1) as � ↓ 0.

Just as the well-known Donsker’s invariance principle (the symmetric simple
random walk approximates the Brownian motion under proper scaling of states
and time), the homogeneous diffusions can be derived as the limit of discrete-
parameter birth-death chains with decreasing step size and increasing frequencies.
Here we only state Theorem 4.1 in Chapter V of ref. 5 without proof, where [r ] is
the integer part of r .

Theorem 6.1. Given two real-valued bounded functions b(x), σ (x) on R, assume
b(x) continuously differentiable with bounded derivatives, and σ ′′ exists and is
continuous, also σ 2(x) > 0 for all x. Let {Y (�)

n : n = 0, 1, 2, . . .} be a discrete-
parameter birth-death chain on S = {0,±�,±2�, . . .} with one-step transition
probabilities pi j from i� to j� given by

pi,i−1 = δ
(�)
i = σ 2(i�)ε

2�2
− b(i�)ε

2�
,

pi,i+1 = β
(�)
i = σ 2(i�)ε

2�2
+ b(i�)ε

2�
,

pii = 1 − δ
(�)
i − β

(�)
i = 1 − σ 2(i�)ε

�2
.

where ε = �2

σ 2
0

with σ 2
0 = supx σ 2(x). Let Y (�)

0 = [x0/�]� where x0 is an initial

fixed point. Define

X (�)
t = Y (�)

[t/ε], ∀t ≥ 0.

(Remember [t/ε] is the integer part of t/ε.) Then, as � ↓ 0, the process {X (�)
t }

converges in distribution to the diffusion process {Xt } with drift b(x) and diffusion
coefficient σ 2(x), starting at x0.

Following the same step as in ref. 5, one can also get the corresponding
theorem for inhomogeneous diffusions, including the time-periodic case.

Theorem 6.2. Given two real-valued bounded functions b(t, x), σ (t, x) on
R

+ × R, assume b(t, x) continuously differentiable with bounded derivatives, and
σ ′′

x exists and is continuous, also σ 2(t, x) > 0 for all t and x. Let {Y (�)
n : n =

0, 1, 2, . . .} be a discrete-parameter birth-death chain on S = {0,±�,±2�, . . .}
with transition probabilities

pi j (n) = P
(

Y (�)
n+1 = j�|Y (�)

n = i�
)
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given by

pi,i−1(n) = δ
(�)
i (n) = σ 2(nε, i�)ε

2�2
− b(nε, i�)ε

2�
,

pi,i+1(n) = β
(�)
i (n) = σ 2(nε, i�)ε

2�2
+ b(nε, i�)ε

2�
,

pii (n) = 1 − δ
(�)
i (n) − β

(�)
i (n) = 1 − σ 2(nε, i�)ε

�2
. (32)

where ε = �2

σ 2
0

with σ 2
0 = supt,x σ 2(t, x). Let Y (�)

0 = [x0/�]� where x0 is an initial

fixed point. Define

X (�)
t = Y (�)

[t/ε], ∀t ≥ 0.

Then, as � ↓ 0, the process {X (�)
t } converges in distribution to the diffusion

process {Xt } with drift b(t, x) and diffusion coefficient σ 2(t, x), starting at x0.

Remark 6.3. The condition ε = �2

σ 2
0

in the above two theorems can be replaced

by the condition that ε = �2

c , for some constant c ≥ σ 2
0 .

In the time-periodic case, consider a subsequence {�k : k = 1, 2, . . .} of
� ↓ 0, where �k = √

cJ/k. Then for each k, the birth-death chain {Y (�k )
n : n =

0, 1, 2, . . .} is a time-periodic Markov chain with temporal period k. We have
known that {X (�k )

t } converges in distribution to the diffusion {Xt }. That is to say,
we can approximate the diffusion process in (1) by time-periodic Markov chains,
which are much more easy to study.

As �k ↓ 0 the state space S = {0,±�k,±2�k, . . .} approximates R, pro-
vided that one takes it for granted that the state j�k represents an inter-
val of width �k around j�k . Accordingly, one can spread the probability
ρ

(n)
i = P(Y (�k )

n = i�k) over this interval. Thus, one can introduce the approxi-
mate density ρ(�k )(t, y) at time t = nε for states y = i�k by

ρ(�k )(nε, i�k) = ρ
(n)
i

�k
. (33)

For each k, we have the master equation of the time-periodic Markov chain
{Y (�k )

n }:
ρ(n+1) = ρ(n) P(n), (34)

i.e.

ρ
(n+1)
i = ρ

(n)
i pii (n) + ρ

(n)
i+1 pi+1,i (n) + ρ

(n)
i−1 pi−1,i (n), ∀i ∈ Z. (35)
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where the row vector ρ(n) = {ρn
i } denotes the distribution of Y (�k )

n , and P(n) =
{pi j (n)} denotes the transition probability matrix.

Rearrange (35) with (32) and (33), then one can also arrive at the difference
equation (31).

Now we come to the conclusion that for each k ∈ N, the time-periodic Markov
chain {Y (�k )

n : n = 0, 1, 2, . . .} is really a simple discrete model of rocking ratchet.

6.2. Particle Current and Circulation Weights

The quantity of most interest in the context of Brownian motor is the particle
current 〈ẋ〉 = 〈ẋ(t)〉 = limt→∞

x(t)
t . By Theorem 6.2, the particle current 〈ẋ〉 can

be regarded as a limit of the particle current of {Y (�k )
n }, i.e. limn→∞ Y

(�k )
n

nε
, when k

tends to infinity.

Remark 6.4. By the ergodic theory, one can prove that both x(t)
t and Y

(�k )
n

nε

converge to a constant with probability 1.

Note that {Y (�k )
n } is a time-periodic Markov chain with period k, and the spatial

periodicity of b(t, x) and σ (t, x), then we can define another time-periodic Markov
chain {Zk

n : Zk
n = Y (�k )

n mod L} with finite state space S̃ = {0,�k, 2�k, . . . , (N −
1)�k}, where N = L

�k
. Technically, one can replace σ 2

0 in Theorem 6.2 by another

constant c > 0 which is larger than σ 2
0 , so that N = L

�k
is an integer with �k =√

cJ/k.
As in Sec. 3, we can define periodical circuits of {Zk

n}. We also denote the
reversed circuit of a periodical circuit C for index l by Cl− and the circulation
weights of them by λC and λCl− .

Since {Y (�k )
n } and {Zk

n} are birth-death chains, every periodical circuit C

completed by {Zk
n} corresponds to that {Y (�k )

n } walks forward or backward with
a certain length, denoted as κC ≥ 0. For instance, let C = (0,�k, 2�k, . . . , (N −
1)�k ; m), whose reversed circuit for index l is Cl− = (0, (N − 1)�k, (N −
2)�k, . . . ,�k ; 2l − m), then κC = κCl− = N�k , for any m = 0, 1, 2, . . . , k − 1.
Notice that each trajectory of {Zk

n} can be decomposed into a set of periodical
circuits, then it is easy to conclude that

lim
n→∞

Y (�k )
n

nε
= 1

ε

∑
C∈C+∞

κC (λC − λCl− ) (36)

for any fixed l = 0, 1, 2, . . . , k − 1, where C+
∞ denotes the set of periodical circuits

of {Zk
n} that corresponds to {Y (�k )

n } walking forward rather than backward. So,



858 Ge et al.

when k is large enough,

〈ẋ〉 ≈ 1

ε

∑
C∈C+∞

κC (λC − λCl− ).

Finally, Theorem 3.22 implies the very interesting result that if the pe-
riodic Markov chain {Zk

n} has periodical reversibility for certain index l =
0, 1, 2, . . . , k − 1 (i.e. λC = λCl− ,∀C ∈ C∞), then vanishes the particle current in

the discrete model {Y (�k )
n } of Brownian motors. So, if one hope that a non-vanishing

particle current exists, he must consider periodically irreversible Markov chains,
which correspond to non-equilibrium steady states in statistical physics.
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